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Abstract

In this paper, we propose a nonparametric estimator for the ruin probability in a
spectrally negative Lévy risk model based on low-frequency observation. The estimator
is constructed via the Fourier transform of the ruin probability. The convergence rates of
the estimator are studied for large sample size. Some simulation results are also given to
show the performance of the proposed method when the sample size is finite.
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1. Introduction

In actuarial science, the surplus process of an insurance company is frequently de-
scribed by the classical compound Poisson risk model (also called Cramér-Lundberg
model), and one of the main topics in ruin theory is the ruin probability. In the past
two decades, a number of methods have be proposed to study the ruin probability, among
which are integro-differential equation technique, renewal theory, Laplace transform, ran-
dom walk arguments, martingale theory, heavy-tailed asymptotic estimations and so on.
Various applications of the above mentioned methods can be found in the nice monograph
by Asmussen and Albrecher (2010).

The analytic (or probabilistic) approach is heavily dependent on the knowledge of
the risk model, such as the premium rate, the inter-claim time distribution and the
claim size distribution. However, in practice, instead of having precise information on
the risk model, it is more likely that only some observed data on the surplus process is
available. From this point of view, statistical methodology is of great importance. For
the estimation of ruin probability, many (semi-)parametric and nonparametric estimators
have been proposed in the literature. See, for example, Frees (1986), Hipp (1989), Croux
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and Vervaerbeke (1990), Pitts (1994) and Politis (2003), Shimizu (2009). For more recent
development on this topic, we refer the interested readers to Masiello (2012), Zhang et
al. (2012) and Zhang and Yang (2013) on estimating the ruin probability, and Shimizu
(2012) on estimating the general Gerber-Shiu function.

In financial market, high frequency trading exists and a lot of high frequency trading
data can be used to make statistical inference of the law of financial market. However,
for an insurance company, it is often the case that only daily or weekly book data on the
surplus level exists. Hence, it is very useful and interesting to study how to estimate the
risk measure for an insurance surplus flow based on low frequency data. In the present
work, we study how to estimate the ruin probability in a classes of spectrally negative
Lévy risk models described below. To the best of our knowledge, this problem has not
been solved in the literature.

Let u ≥ 0 be the initial surplus of an insurance company. The surplus level at time t
is given by u+Xt, where X = {Xt, t ≥ 0} is a spectrally negative Lévy process. Suppose
that X0 = 0 and Xt has characteristic function

ϕXt(s) := EeisXt = etΨ(s),

with characteristic exponent

Ψ(s) = ics− σ2

2
s2 +

∫ ∞

0
(e−isx − 1)ν(dx),

where c > 0, σ2 ≥ 0, and ν is a Lévy measure supported on (0,∞) satisfying the usual
condition ∫ ∞

0
(1 ∧ x2)ν(dx) <∞

and the net profit condition

c > µ1 :=

∫ ∞

0
xν(dx). (1.1)

Huzak et al. (2004) considered a more general perturbed risk model defined by

Rt = u+ ct− Ct + Pt, t ≥ 0, (1.2)

where Ct is a pure-jump Lévy process with only positive jumps, representing the total
claims up to time t, and Pt is a spectrally negative Lévy process with zero mean, repre-
senting the perturbation. Note that the Lévy risk model Xt in this paper is a special case
of (1.2), since in fact we have replaced Pt by a Brownian motion. However, such special
setting is not restrictive, because we can always remove the linear drift and the jump
components in Pt to the premium income and the aggregate claims process, respectively.
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Define the ruin probability by

ψ(u) = P(u+Xt < 0 for some t > 0).

In this paper, we are interested in estimating ψ based on some observed values of X.
We assume that the characteristic triple (c, σ2, ν) is unknown. Note that if c is the
premium rate, it is known in practice, however, some additional unknown drift in the
perturbation may be included in the total drift. If the Lévy density ν ≡ 0, X reduces to
a Brownian motion with drift, and this leads to a parametric estimation problem. In this
simple situation, we can use some traditional maximum likelihood methods to solve this
problem. In the reminder of this paper, we shall not discuss this special case.

The reminder of this paper is organized as follows. In Section 2, we construct an
estimator for ψ via its Fourier transform. In Section 3, we study the consistency properties
of our estimator. Some simulations are given in Section 4 to illustrate the performance
of our estimator with finite sample size.

2. The estimator

Throughout this paper, we denote the Fourier transform of an integrable function v by
Fv(s) =

∫
eisxv(x)dx, where integral without indicated domain is taken over the whole

real line. We use Rs to denote the real part of a complex number s. We use C,C ′, C ′′

to denote positive generic constants that may vary at different steps. For two positive
sequences {xn}∞n=1 and {yn}∞n=1, xn . yn means that xn ≤ Cyn for some constant C for
large index n.

2.1. Fourier transform of ψ

Let

µk =

∫ ∞

0
xkν(dx), k = 1, 2, 3, . . . ,

as long as the above integrals are finite. In particular, integration by parts gives

µ1 =

∫ ∞

0
ν(x,∞)dx < c

thanks to the net profit condition (1.1). Let ρ = µ1/c. By Theorem 3.1 in Huzak et al.
(2004) we have the following Pollaczek-Hinchin type formula for the survival probability,

1− ψ(u) = (1− ρ)

∞∑
j=0

ρj(G(j+1)∗ ∗Hj∗)(u), u ≥ 0, (2.1)
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where H(x) = 1
µ1

∫ x
0 ν(y,∞)dy, and G is determined by the Laplace transform∫ ∞

0
e−sxdG(x) =

c

c+ σ2

2 s
.

Because ruin occurs immediately if the initial surplus is negative, we have ψ(u) = 1
for u < 0. Hence, ψ is not integrable over the whole real line. To overcome this drawback,
we modify the ruin probability by setting ψ(u) = 0 for u < 0. In the sequel, we only
consider this modification and still denote it by ψ. It is not hard to see that ψ is absolutely
integrable after such modification. By formula (2.1) we obtain

Fψ(s) =

∫ ∞

0
eisuψ(u)du

= (1− ρ)
∞∑
j=0

ρj
(∫∞

0 eisxdG(x)
)j+1 (∫∞

0 eisxdH(x)
)j − 1

is

=
1

is

(
(1− ρ)

∫∞
0 eisxdG(x)

1− ρ
∫∞
0 eisxdG(x) ·

∫∞
0 eisxdH(x)

− 1

)
. (2.2)

Note that ∫ ∞

0
eisxdG(x) =

c

c− σ2

2 is

and by changing the order of integrals∫ ∞

0
eisxdH(x) =

1

µ1

∫ ∞

0
eisx

∫ ∞

x
ν(dy)dx =

1

isµ1

∫ ∞

0
(eisy − 1)ν(dy).

Then we can write (2.2) in the following form,

Fψ(s) =
σ2

2 is+
1
is

∫∞
0 (eisx − 1)ν(dx)− µ1

ics+ σ2

2 s
2 −

∫∞
0 (eisx − 1)ν(dx)

=
N(s)

D(s)
, (2.3)

where

D(s) = −Ψ(−s)(is)−1,

N(s) =
σ2

2
+

1

(is)2

∫ ∞

0
(eisx − 1− isx)ν(dx).

Lemma 1. Suppose that µ2 > 0. Then we have

|Fψ(s)| ≤ C

1 ∨ |s|
.
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Proof. Note that

Ψ(−s) = −ics− σ2

2
s2 +

∫ ∞

0
(cos(sx)− 1)ν(dx) + i

∫ ∞

0
sin(sx)ν(dx).

Using the inequality |a1 + ia2| ≥ max(|a1|, |a2|) for real numbers a1, a2, we obtain

|D(s)| = |Ψ(−s)s−1| ≥
∣∣∣∣c− ∫ ∞

0
sin(sx)s−1ν(dx)

∣∣∣∣
≥ c−

∫ ∞

0

∣∣∣∣sin(sx)sx

∣∣∣∣xν(dx) ≥ c− µ1 > 0,

and

|D(s)| = |Ψ(−s)s−1| ≥ σ2

2
|s|+

∫ ∞

0

1− cos(sx)

|s|
ν(dx) ≥ σ2

2
|s|.

Hence, we have
1

|D(s)|
≤ C, for σ2 = 0, (2.4)

and
1

|D(s)|
≤ C

1 ∨ |s|
, for σ2 > 0. (2.5)

For N(s), using the inequality

|eix − 1− ix| ≤ min(x2/2, 2|x|),

we have

|N(s)| ≤ σ2

2
+ min(µ2/2, 2µ1/|s|). (2.6)

Finally, combining (2.4), (2.5) and (2.6) we complete the proof. 2

Remark 1. Suppose that µ2 <∞. Using the inequality |a1 + ia2| ≤ |a1|+ |a2| we obtain

|D(s)| ≤ c+

∫ ∞

0

∣∣∣∣sin(sx)sx

∣∣∣∣xν(dx) + σ2

2
|s|+

∫ ∞

0

1− cos(sx)

|s|
ν(dx)

≤ c+ µ1 +
σ2 + µ2

2
|s|, (2.7)

where we have used the inequality 1− cosx ≤ x2

2 in the second step.

It follows from Lemma 1 that Fψ is not absolutely integrable but square integrable.
Since ψ(u) is a monotonic function, using “principal value” integral we can still recover
ψ by Fourier inversion, i.e.

ψ(u) =
1

2π
PV

∫
e−isuN(s)

D(s)
ds =

1

2π
lim

M→∞

∫ M

−M
e−isuN(s)

D(s)
ds. (2.8)
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2.2. Constructing an estimator

Recently, a lot of contributions have been made to the estimation of the Lévy char-
acteristic triplet (c, σ2, ν). See, for example, Comte and Genon-Catalot (2009, 2010),
Gugushvili (2009, 2012), Kappus and Reiß(2010), Kappus (2014). Once we can get some
estimates of the Lévy triplet, we can use (2.1) to estimate the survival probability by a
plug-in technique. However, due to the complexity of (2.1), such straightforward method
is not applicable in practical applications. It follows from (2.3) that the Fourier trans-
form of the ruin probability is closely related to the characteristic exponent Ψ, and we
can recover Ψ from the characteristic function ϕXt . Hence, it is more convenient to use
characteristic function and Fourier transform to construct the estimator.

Assume that some discrete observed values of X, i.e. {Xk∆, k = 0, 1, 2 . . . , n}, are
available, where ∆ > 0 is the sampling interval. Different from Zhang and Yang (2013),
we assume that ∆ is fixed. Let

Zk = Z∆
k = Xk∆ −X(k−1)∆, k = 1, 2, . . . , n.

Let Z be a generic version of Zk and denote the characteristic function of Z by ϕZ . Then
we have

ϕZ(s) = e∆Ψ(s).

In order to estimate the ruin probability, we firstly estimate its Fourier transform. It
follows from (2.3) that we need to estimate the following quantities,

D(s), N(s).

First, we estimate D(s). Note that D(s) = − 1
∆(is)−1LogϕZ(−s), where Log denotes

the distinguished logarithm (see e.g. Theorem 7.6.2. in Chung (2001)). Let ϕ̂Z(s) =
1
n

∑n
j=1 e

isZj be the empirical characteristic function, and set

ϕ̃Z(s) = ϕ̂Z(s)1An,s + 1Ac
n,s
,

where An,s = {|ϕ̂Z(s)| ≥ n−
1
2 }. Then ϕ̃Z(s) never vanishes, although it is not continuous.

Let {rn} be a sequence such that rn > 0 and rn → 0. We estimate D(s) by

D̂(s) = D̃(s)1Bn,s + rn1Bc
n,s
, (2.9)

where

D̃(s) = − 1

∆
(is)−1Logϕ̃Z(−s), Bn,s =

{
|D̃(s)| ≥ rn

}
.

Next, we estimate N(s). It is readily seen that

N(s) = (is)−1(c− µ1 −D(s)). (2.10)
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For the mean value c− µ1, it can be estimated by

1

n∆

n∑
j=1

Zj .

By (2.10), we can estimate N(s) by

N̂(s) :=
1

is

 1

n∆

n∑
j=1

Zj − D̂(s)

 . (2.11)

Finally, by (2.8), (2.9) and (2.11), we propose the following estimator for ruin probability,

ψ̂(u) =
1

2π
R
∫ Mn

mn

e−ius N̂(s)

D̂(s)
ds+

1

2π
R
∫ −mn

−Mn

e−ius N̂(s)

D̂(s)
ds, u > 0, (2.12)

where mn and Mn are positive cut-off numbers such that mn → 0 and Mn → ∞ as
n→ ∞.

3. Conditions and convergence rates

In this section, we study the consistency properties of the estimator. It is known that
the convergence rate of the Lévy characteristic triplet depends heavily on the decay rate
of the characteristic function ϕZ . See, for example, Kappus and Rieß(2010), Gugushvili
(2012) and Kappus (2014). In order to present the main result of this paper, it is more
convenient to classify the characteristic function ϕZ according to its decay rate.

We consider the following three classes of characteristic functions.

• Class I (bounded away from zero)

Σ1(d0, d1) = {ϕ : ϕ is a characteristic function,

d0 ≤ |ϕ(s)| ≤ d1 uniformly in s ∈ R, d0, d1 > 0}.

• Class II (polynomial decay rate)

Σ2(d0, d1, β) = {ϕ : ϕ is a characteristic function,

d0

(1 + s2)β/2
≤ |ϕ(s)| ≤ d1

(1 + s2)β/2
uniformly in s ∈ R,

d0, d1, β > 0}.
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• Class III (exponent decay rate)

Σ3(d0, d1, β0, β1, β, γ0, γ1)

= {ϕ : ϕ is a characteristic function,

d0e
−γ0|s|β

(1 + s2)β0/2
≤ |ϕ(s)| ≤ d1e

−γ1|s|β

(1 + s2)β1/2
uniformly in s ∈ R,

d0, d1, β, γ0, γ1 > 0, β0, β1 ∈ R}.

Remark 2. If the characteristic function ϕZ decays at polynomial rate, then the corre-
sponding density function is ordinary smooth; if the characteristic function ϕZ decays at
exponential rate, then the corresponding density function is supersmooth. See, for exam-
ple, Fan (1991).

We give some examples.

Example 1 (Drift−Compound Poisson process). Let Xt = ct − St, where St is a
compound Poisson process. Then

Ψ(s) = ics+

∫ ∞

0
(e−isx − 1)ν(dx)

with
∫∞
0 ν(dx) < ∞. Note that |ϕZ(s)| = e∆RΨ(s) and RΨ(s) =

∫∞
0 (cos(sx) − 1)ν(dx).

This leads to
e−2∆

∫∞
0 ν(dx) ≤ |ϕZ(s)| ≤ 1.

Then the characteristic function ϕZ belongs to class I.

Example 2 (Drift−Lévy-Gamma process). Let Xt = ct − Γt, where for fixed t, Γt

follows Gamma distribution with parameters (τ0t, τ1) with τ0, τ1 > 0. The characteristic
function of Z is given by

ϕZ(s) = ei∆cs

(
τ1

τ1 + is

)τ0∆

.

Hence, the characteristic function ϕZ belongs to class II.

Example 3 (Drift−Inverse Gauss process). Let Xt = ct − IGt, where IGt is an
inverse Gauss process with Lévy measure

ν(dx) =
1√
2πx3

e−
b2

2
x1(x>0)dx, b > 0.

Then for some real number c′ we have

Ψ(s) = ic′s+ b−
√
b2 − 2is.

which implies that the characteristic function ϕZ belongs to class III.
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Example 4 (Drift+Brownian motion−subordinator). In this case, we have

Ψ(s) = ics− σ2

2
s2 −

∫ ∞

0
(e−isx − 1)ν(dx), σ2 > 0.

Obviously, in this example the characteristic function ϕZ belongs to class III.

The convergence rate of the estimator also depends on the choice of the parameters
rn, mn and Mn. We consider the following three conditions, which correspond to the
above three classes of characteristic functions.

Condition M

(M.1) rn = n−κ1 , mn = n−κ2 , where κ1, κ2 > 0 and 1− 2(κ1 + κ2) > 0.

(M.2) rn = n−κ1 , mn = n−κ2 ,Mn = nα, where κ1, κ2, α, β > 0, and 1−2(κ1+κ2+αβ) > 0.

(M.3) rn = n−κ1 , mn = n−κ2 , Mn = (α log n)
1
β , where κ1, κ2, α, γ0 > 0, 1 − 2(κ1 + κ2 +

γ0α) > 0.

Now we present two lemmas that are useful to prove the consistency of our estimator.

Lemma 2. (1) If ϕZ ∈ Σ1(d0, d1), then

sup
s∈(−∞,+∞)

P(Ac
n,s). exp

(
− 3d20
8(d0 + 3)

n

)
. (3.1)

(2) If ϕZ ∈ Σ2(d0, d1, β), Mn = nα and 1− 2αβ > 0, then

sup
|s|≤|Mn

P(Ac
n,s). exp

(
−d

2
0

16
n1−2αβ

)
. (3.2)

(3) If ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1), Mn = (α log n)
1
β and 1 − 2αγ0 > 0, then for

α < α′ < 1
2γ0

we have

sup
|s|≤Mn

P(Ac
n,s). exp

(
−d

2
0

16
n1−2γ0α′

)
. (3.3)

Proof. Using the inequality |a+ b| ≥ |a| − |b| we have

P(|ϕ̂Z(s)| < n−
1
2 ) ≤ P

(
|ϕ̂Z(s)− ϕZ(s)| ≥ |ϕZ(s)| − n−

1
2

)
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= P

∣∣∣∣∣∣
n∑

j=1

(eisZj − EeisZj )

∣∣∣∣∣∣ ≥ n|ϕZ(s)| − n
1
2

 . (3.4)

We apply Bernstein’s inequality ( see Appendix A) to bound the probability on the right
hand side of (3.4). Note that eisZ1 − EeisZ1 , . . . , eisZn − EeisZn are independent centered
random variables and satisfy

|eisZj − EeisZj | ≤ 2,
n∑

j=1

Var
(
eisZj − EeisZj

)
≤ n.

If ϕZ ∈ Σ1(d0, d1), then for large enough n we have

n|ϕZ(s)| − n
1
2 ≥ 1

2
d0n

uniformly in s. Hence, by Bernstein’s inequality and (3.4) we obtain

P(Ac
n,s) ≤ C · P

∣∣∣∣∣∣
n∑

j=1

(eisZj − EeisZj

∣∣∣∣∣∣ ≥ 1

2
d0n

 ≤ C · exp
(
− 3d20
8(d0 + 3)

n

)
.

If ϕZ ∈ Σ1(d0, d1, β), then for large enough n and |s| ≤Mn = nα we have

n|ϕZ(s)| − n
1
2 ≥ d0n(1 +M2

n)
−β

2 − n
1
2 ≥ d0n

1−αβ − n
1
2 ≥ 1

2
d0n

1−αβ.

By Bernstein’s inequality and (3.4) we have

P
(
Ac

n,s

)
. P

∣∣∣∣∣∣
n∑

j=1

(eisZj − EeisZj

∣∣∣∣∣∣ ≥ 1

2
d0n

1−αβ


. exp

(
−

1
8d

2
0n

2−2αβ

n+ 1
3d0n

1−αβ

)

. exp

(
− 1

16
d20n

1−2αβ

)
.

If ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1), then for |s| ≤ (α log n)
1
β we have

n|ϕZ(s)| − n
1
2 ≥ d0n(1 + s2)−β0/2 exp(−γ0|s|β)− n

1
2

≥ d0(1 + s2)−β0/2n1−γ0α − n
1
2

≥ 1

2
d0n

1−γ0α′
(for large enough n).

10



Again, by Bernstein’s inequality and (3.4) we obtain

P
(
Ac

n,s

)
.P

∣∣∣∣∣∣
n∑

j=1

(eisZj − EeisZj

∣∣∣∣∣∣ ≥ 1

2
d0n

1−γ0α′

. exp

(
− 1

16
d20n

1−2γ0α′
)
.

Then (3.1)-(3.3) follow immediately from the above results. 2

Lemma 3. (1) If ϕZ(s) ∈ Σ1(d0, d1), then under condition (M.1) we have

sup
mn≤|s|≤Mn

P(|Bc
n,s). exp

(
− 1

16
d20∆

2n1−2(κ1+κ2)

)
. (3.5)

(2) If ϕZ(s) ∈ Σ2(d0, d1, β), then under condition (M.2) we have

sup
mn≤|s|≤|Mn

P(Bc
n,s). exp

(
− 1

64
d20∆

2n1−2(κ1+κ2)−2αβ

)
. (3.6)

(3) If ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1), then under condition (M.3), we have for α <

α′ < 1−2(κ1+κ2)
2γ0

sup
mn≤|s|≤Mn

P(Bc
n,s). exp

(
− 1

64
d20∆

2n1−2(κ1+κ2)−2γ0α′
)
. (3.7)

Proof. It follows from (2.4) and (2.5) that |D(s)| is bounded away from zero, which
implies that for sufficiently large n,

|D(s)| ≥ 2rn

uniformly in s, since rn → 0. Hence, for |s| ∈ [mn,Mn] we have

P
(
|D̃(s)| < rn

)
≤ P

(
|D̃(s)−D(s)| > |D(s)| − rn

)
. P

(
|D̃(s)−D(s)| > rn

)
. P

(
{|D̃(s)−D(s)| > rn} ∩An,s

)
+ P(Ac

n,s)

. P (|Log(1 + Λ(s))| > ∆mnrn) + P(Ac
n,s), (3.8)

where Λ(s) = ϕ̂Z(−s)/ϕZ(−s)− 1.
Upper bounds for P(Ac

n,s) have been given in Lemma 2. Hence, we only need to bound
the first probability on the right hand side of (3.8). Note that ∆mnrn → 0. Using the
inequality

|Log(1 + z)| ≤ 2|z|, for |z| ≤ 1

2
, (3.9)
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we have

P (|Log(1 + Λ(s))| > ∆mnrn)

≤ P
(
|Log(1 + Λ(s))| ≥ ∆mnrn, |Λ(s)| < 1

2
∆mnrn

)
+ P

(
|Λ(s)| ≥ 1

2
∆mnrn

)
. P

(
|Λ(s)| ≥ 1

2
∆mnrn

)
= P

(
|ϕ̂Z(−s)− ϕZ(−s)| ≥

1

2
∆mnrn|ϕZ(−s)|

)

= P

∣∣∣∣∣∣
n∑

j=1

(e−isZj − Ee−isZj )

∣∣∣∣∣∣ ≥ 1

2
∆nmnrn|ϕZ(−s)|

 . (3.10)

We will use Bernstein’s inequality to bound the above probability.
If ϕZ ∈ Σ1(d0, d1), then under condition (M.1) we have

1

2
∆nmnrn|ϕZ(−s)| ≥

1

2
d0∆n

1−κ1−κ2 .

Applying Bernstein’s inequality to (3.10) gives

P (|Log(1 + Λ(s))| > ∆mnrn) . P

∣∣∣∣∣∣
n∑

j=1

(e−isZj − Ee−isZj )

∣∣∣∣∣∣ ≥ 1

2
d0∆n

1−κ1−κ2


. exp

(
− 1

16
d20∆

2n1−2(κ1+κ2)

)
,

which, together with (3.1) and (3.8), gives (3.5).
If ϕZ ∈ Σ2(d0, d1, β), then under condition (M.2), for |s| ≤ nα and large enough n we

have
1

2
∆nmnrn|ϕZ(−s)| ≥

1

2
d0∆nmnrn(1 + s2)−

β
2 ≥ 1

4
d0∆n

1−κ1−κ2−αβ .

Hence, by (3.10) and Bernstein’s inequality we obtain

P (|Log(1 + Λ(s))| > ∆mnrn)

. P

∣∣∣∣∣∣
n∑

j=1

(e−isZj − Ee−isZj )

∣∣∣∣∣∣ ≥ 1

4
d0∆n

1−κ1−κ2−αβ


. exp

(
− 1

64
d20∆

2n1−2(κ1+κ2+αβ)

)
,

which, together with (3.2) and (3.8), gives (3.6).
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If ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1), then under condition (M.3), for |s| ≤ (α logn)
1
β ,

α < α′ < 1−2(κ1+κ2)
2γ0

and large enough n, we have

1

2
∆nmnrn|ϕZ(−s)| ≥

1

2
d0∆nmnrn(1 + s2)−

β
2 exp(−γ0|s|β) ≥

1

4
d0∆n

1−κ1−κ2−γ0α′
.

Again, we can apply Berstein’s inequality to (3.10) to obtain

P (|Log(1 + Λ(s))| > ∆mnrn)

. P

∣∣∣∣∣∣
n∑

j=1

(e−isZj − Ee−isZj )

∣∣∣∣∣∣ ≥ 1

4
d0∆n

1−κ1−κ2−γ0α′


. exp

(
− 1

64
d20∆

2n1−2(κ1+κ2+γ0α′)

)
, (3.11)

which, together with (3.3) and (3.8), gives (3.7). 2

The following two propositions are also useful.

Proposition 1. Let p ≥ 2 be an integer.

(1) If ϕZ ∈ Σ1(d0, d1), then under condition (M.1) we have

sup
|s|∈[mn,Mn]

E|D̂(s)−D(s)|p.n−
p
2
+pκ2 ,

and for |s| ∈ [mn,Mn]

E

∣∣∣∣∣ 1

D̂(s)
− 1

D(s)

∣∣∣∣∣
p

. 1

|D(s)|p
n−

p
2
+p(κ1+κ2).

(2) If ϕZ ∈ Σ2(d0, d1, β), then under condition (M.2) we have

sup
|s|∈[mn,Mn]

E|D̂(s)−D(s)|p.n−
p
2
+pθ,

and for |s| ∈ [mn,Mn]

E

∣∣∣∣∣ 1

D̂(s)
− 1

D(s)

∣∣∣∣∣
p

. 1

|D(s)|p
n−

p
2
+p(κ1+θ),

where θ = max(κ2, α(β − 1)).
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(3) If ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1), then under condition (M.3) we have

sup
|s|∈[mn,Mn]

E|D̂(s)−D(s)|p.max(n−
p
2
+pκ2 , (α log n)

p(β0−1)
β n−

p
2
+pγ0α).

and for |s| ∈ [mn,Mn]

E

∣∣∣∣∣ 1

D̂(s)
− 1

D(s)

∣∣∣∣∣
p

. 1

|D(s)|p
max(n−

p
2
+p(κ1+κ2), (α log n)

p(β0−1)
β n−

p
2
+p(κ1+γ0α)).

Proof. Recall the definitions of An,s and Bn,s. We note that D̃(s) = 0 on the com-
plement set Ac

n,−s. Hence, Bn,s ∩ Ac
n,−s is an empty set. Then for |s| ∈ [mn,Mn], we

have

E|D̂(s)−D(s)|p

= E
(
|D̃(s)−D(s)|p1Bn,s

)
+ E

(
|rn −D(s)|p1Bc

n,s

)
= E

(
|D̃(s)−D(s)|p1Bn,s∩An,−s∩{|Λ(s)|≤ 1

2
}

)
+E

(
|D̃(s)−D(s)|p1Bn,s∩An,−s∩{|Λ(s)|> 1

2
}

)
+ E

(
|rn −D(s)|p1Bc

n,s

)
:= I1 + I2 + I3, (3.12)

where Λ(s) = ϕ̂Z(−s)/ϕZ(−s)− 1.
For I3, by Cr inequality and Remark 1 we have

I3.(rpn +Mp
n)P(Bc

n,s)

for |s| ≤Mn. Furthermore, by the exponential bounds for P(Bc
n,s) given in Lemma 3, we

have
sup

|s|∈[mn,Mn]
I3.(rpn +Mp

n) exp(−C ′nϵ) (3.13)

for some C ′ > 0 and 0 < ϵ < 1.
Next, we derive upper bounds for I2. On Bn,s ∩An,−s we have

|D̃(s)|.|s|−1 log n.

Hence, using Cr inequality and Remark 1, for |s| ∈ [mn,Mn] we have

I2 . (m−p
n (log n)p +Mp

n)P(|Λ(s)| > 1/2)

. (m−p
n (log n)p +Mp

n)P
(
|Λ(s)| > 1

2
∆mnrn

)
,
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where the second step follows from the fact that mnrn → 0 as n → ∞. By the above
inequality and the proof of Lemma 3 we know that

sup
|s|∈[mn,Mn]

I2.(m−p
n (log n)p +Mp

n) exp(−C ′′nϵ
′
) (3.14)

for some C ′′ > 0 and 0 < ϵ′ < 1.
For I1, using (3.9) and the Rosenthal inequality (see Appendix A) we can obtain

I1 =
1

(∆|s|)p
E
(
|Log(1 + Λ(s))|p1Bn,s∩An,−s∩{|Λ(s)|≤ 1

2
}

)
. 1

|sϕZ(−s)|p
E|ϕ̂Z(−s)− ϕZ(−s)|p

. 1

|sϕZ(s)|p

(
1

np−1
+

1

np/2

)
. n−p/2

|sϕZ(s)|p
(for p ≥ 2). (3.15)

Hence, in order to analyze the upper bound in (3.15), we need to distinguish the decay
rates of ϕZ . We consider three cases.

(1) If ϕZ ∈ Σ1(d0, d1), then under condition (M.1), we obtain from (3.15) that

sup
|s|∈[mn,Mn]

I1.n−
p
2
+pκ2 . (3.16)

(2) If ϕZ ∈ Σ2(d0, d1, β), we have

|sϕZ(s)|−p ≤ d−p
0 (1 + s2)

pβ
2 |s|−p.


|s|−p, |s| ≤ 1,

|s|p(β−1), |s| > 1.

Then under condition (M.2), (3.15) yields

sup
|s|∈[mn,Mn]

I1.max(n−
p
2
+pκ2 , n−

p
2
+pα(β−1)) = n−

p
2
+pθ. (3.17)

(3) If ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1), we have

|sϕZ(s)|−p ≤ d−p
0 |s|−p(1 + s2)

pβ0
2 exp(pγ0|s|β)

.


|s|−p, |s| ≤ 1,

|s|p(β0−1) exp(pγ0|s|β), |s| > 1.
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Then

sup
|s|∈[mn,Mn]

|sϕZ(s)|.max(npκ2 , (α log n)
p(β0−1)

β npγ0α).

By (3.15) we obtain

sup
|s|∈[mn,Mn]

I1.max(n−
p
2
+pκ2 , (α log n)

p(β0−1)
β n−

p
2
+pγ0α). (3.18)

Compared with (3.16)-(3.18), the upper bounds obtained in (3.13) and (3.14) are negli-
gible. Then the upper bounds for E|D̂(s)−D(s)|p are obtained.

Finally, from the definition of D̂(s) we know

E

∣∣∣∣∣ 1

D̂(s)
− 1

D(s)

∣∣∣∣∣
p

≤ r−p
n

|D(s)|p
E
∣∣∣D̂(s)−D(s)

∣∣∣p . (3.19)

Then the reminder of the proof follows immediately from the above results. 2

Proposition 2. Suppose that µp <∞ for an integer p ≥ 2.

(1) If ϕZ ∈ Σ1(d0, d1), then under condition (M.1) we have for |s| ∈ [mn,Mn]

E|N̂(s)−N(s)|p. 1

|s|p
n−

p
2
+pκ2 .

(2) If ϕZ ∈ Σ2(d0, d1, β), then under condition (M.2) we have for |s| ∈ [mn,Mn]

E|N̂(s)−N(s)|p. 1

|s|p
n−

p
2
+pθ.

(3) If ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1), then under condition (M.3) we have for |s| ∈
[mn,Mn]

E|N̂(s)−N(s)|p. 1

|s|p
·max(n−

p
2
+pκ2 , (α log n)

p(β0−1)
β n−

p
2
+pγ0α).

Proof. By (2.10) and (2.11) we have

|N̂(s)−N(s)|p =

∣∣∣∣∣∣ 1is
 1

n∆

n∑
j=1

(Zj − EZj)− (D̂(s)−D(s))

∣∣∣∣∣∣
p

. 1

|s|p
E

∣∣∣∣∣∣ 1

n∆

n∑
j=1

(Zj − EZj)

∣∣∣∣∣∣
p

+
1

|s|p
E
∣∣∣D̂(s)−D(s)

∣∣∣p . (3.20)
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If µp <∞, then E|Zj |p <∞. By the Rosenthal inequality we obtain

E

∣∣∣∣∣∣ 1n
n∑

j=1

(Zj − EZj)

∣∣∣∣∣∣
p

.
(

1

np−1
+

1

np/2

)
. 1

np/2
(for p ≥ 2),

which, together with (3.20) and Proposition 1, gives the desired results. 2

Now we give the main result of this section. For two square integrable functions

f, g, define the metric ∥f − g∥ =
(∫

(f(x)− g(x))2dx
) 1

2 . The following theorem shows

consistency of ψ̂ under the risk measure E∥ψ̂ − ψ∥2.

Theorem 1. Suppose that µ4 <∞.

(1) If ϕZ ∈ Σ1(d0, d1), then under condition (M.1) with 1− 3κ2 > 0 we have

E∥ψ̂ − ψ∥2.max
(
n−1+2(κ1+κ2), n−1+3κ2 , n−κ2

)
. (3.21)

(2) If ϕZ ∈ Σ2(d0, d1, β), then under condition (M.2) with 1 − 2(κ1 + θ) > 0 and
1− κ2 − 2θ > 0 we have

E∥ψ̂ − ψ∥2.max
(
n−1+2(κ1+θ), n−1+κ2+2θ, n−α, n−κ2

)
. (3.22)

(3) If ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1), then under condition (M.3) with 1− 3κ2 > 0 we
have

E∥ψ̂ − ψ∥2.(α log n)
− 1

β . (3.23)

Proof. Note that ψ(u) is a real-valued function. Then we have

∥ψ̂ − ψ∥2

≤
∫ ∞

0

∣∣∣∣∣ 12π
∫ Mn

mn

e−ius N̂(s)

D̂(s)
ds+

1

2π

∫ mn

−Mn

e−ius N̂(s)

D̂(s)
ds− ψ(u)

∣∣∣∣∣
2

du

=
1

2π

∫
mn<|s|<Mn

∣∣∣∣∣N̂(s)

D̂(s)
− N(s)

D(s)

∣∣∣∣∣
2

ds+
1

2π

∫
|s|≥Mn

∣∣∣∣N(s)

D(s)

∣∣∣∣2 ds+ 1

2π

∫
|s|≤mn

∣∣∣∣N(s)

D(s)

∣∣∣∣2 ds
:= II1 + II2 + II3, (3.24)

where the second step follows from Parseval’s identity.
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For II1, using the inequality |a + b|2 ≤ 2|a|2 + 2|b|2 and Cauchy-Schwarz inequality
we obtain

EII1 ≤ E
1

π

∫
mn<|s|<Mn

∣∣∣∣∣N̂(s)

D̂(s)
− N̂(s)

D(s)

∣∣∣∣∣
2

ds+ E
1

π

∫
mn<|s|<Mn

∣∣∣∣∣N̂(s)

D(s)
− N(s)

D(s)

∣∣∣∣∣
2

ds

≤ E
2

π

∫
mn<|s|<Mn

∣∣∣N̂(s)−N(s)
∣∣∣2 · ∣∣∣∣∣ 1

D̂(s)
− 1

D(s)

∣∣∣∣∣
2

ds

+E
2

π

∫
mn<|s|<Mn

|N(s)|2 ·

∣∣∣∣∣ 1

D̂(s)
− 1

D(s)

∣∣∣∣∣
2

ds+ E
1

π

∫
mn<|s|<Mn

|N̂(s)−N(s)|2

|D(s)|2
ds

:= II1,1 + II1,2 + II1,3.

For II2 and II3, by Lemma 1 we have

II2 = O(M−1
n ), II3 = O(mn). (3.25)

In order to complete the proof, we consider three situations according to the decay rates
of ϕZ .

First, suppose that ϕZ ∈ Σ1(d0, d1) and condition (M.1) holds with 1− 3κ2 > 0. By
Cauchy-Schwarz inequality, Proposition 1 and Proposition 2, we have

II1,1 ≤ 2

π

∫
mn<|s|<Mn

E
1
2

∣∣∣N̂(s)−N(s)
∣∣∣4 · E 1

2

∣∣∣∣∣ 1

D̂(s)
− 1

D(s)

∣∣∣∣∣
4

ds

. 2

π

∫
mn<|s|<Mn

(
1

|s|4
n−2+4κ2

) 1
2
(

1

|D(s)|4
n−2+4(κ1+κ2)

) 1
2

ds

. n−2+2(κ1+2κ2)

∫ Mn

mn

1

s2
ds

= n−2+2(κ1+2κ2)(m−1
n −M−1

n )

. n−2+2κ1+5κ2 ,

where we have used the fact that |D(s)| > c − µ1 > 0. For II1,2, by Proposition 1 and
Lemma 1 we have

II1,2 . n−1+2(κ1+κ2)

∫
mn<|s|<Mn

∣∣∣∣N(s)

D(s)

∣∣∣∣2 ds
. n−1+2(κ1+κ2)

∫
1

1 ∨ s2
ds

. n−1+2(κ1+κ2).
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For II1,3, by Proposition 3 we have

II1,3 . n−1+2κ2

∫ Mn

mn

1

s2
ds

= n−1+2κ2(m−1
n −M−1

n )

. n−1+3κ2 .

Take Mn = n. By (3.25) we have

II2 = O(n−1), II3 = O(n−κ2).

Combining the above results we find that

E∥ψ̂ − ψ∥2 . max
(
n−2+2κ1+5κ2 , n−1+2(κ1+κ2), n−1+3κ2 , n−1, n−κ2

)
. max

(
n−1+2(κ1+κ2), n−1+3κ2 , n−κ2

)
,

since compared with n−1+2(κ1+κ2) and n−1+3κ2 , n−1+2κ1+5κ2 = n−1+2(κ1+κ2) ·n−1+3κ2 and
n−1 are negligible.

Next, suppose that ϕZ ∈ Σ2(d0, d1, β) and condition (M.2) holds with 1−2(κ1+θ) > 0
and 1− κ2 − 2θ > 0. As in the analysis of the first case, we have

II1,1 .
∫ Mn

mn

(
1

|s|4
n−2+4θ

) 1
2
(

1

|D(s)|4
n−2+4(κ1+θ)

) 1
2

ds

. n−2+4θ+2κ1+κ2 ,

II1,2 . n−1+2(κ1+θ)

∫ Mn

mn

∣∣∣∣N(s)

D(s)

∣∣∣∣2 ds.n−1+2(κ1+θ),

II1,3 . n−1+2θ

∫ Mn

mn

1

s2
ds.n−1+κ2+2θ,

and
II2 = O(n−α), II3 = O(n−κ2).

Hence,

E∥ψ̂ − ψ∥2 . max
(
n−2+4θ+2κ1+κ2 , n−1+2(κ1+θ), n−1+κ2+2θ, n−α, n−κ2

)
. max

(
n−1+2(κ1+θ), n−1+κ2+2θ, n−α, n−κ2

)
,

since compared with n−1+2(κ1+θ) and n−1+κ2+2θ, n−2+4θ+2κ1+κ2 = n−1+2(κ1+θ) ·n−1+κ2+2θ

is negligible.
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Finally, suppose that ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1) and condition (M.3) holds with
1− 3κ2 > 0. As in the first case, we have

II1,1 .
∫ Mn

mn

(
1

|s|4
max

(
n−2+4κ2 , (α logn)

4(β0−1)
β n−2+4γ0α

)) 1
2

×
(

1

|D(s)|4
max

(
n−2+4(κ1+κ2), (α log n)

4(β0−1)
β n−2+4(κ1+γ0α)

)) 1
2

ds

. max

(
n−1+2κ2 , (α log n)

2(β0−1)
β n−1+2γ0α

)
×max

(
n−1+2(κ1+κ2), (α log n)

2(β0−1)
β n−1+2(κ1+γ0α)

)∫ Mn

mn

1

s2
ds

. max

(
n−1+3κ2 , (α log n)

2(β0−1)
β n−1+κ2+2γ0α

)
×max

(
n−1+2(κ1+κ2), (α log n)

2(β0−1)
β n−1+2(κ1+γ0α)

)
,

II1,2 . max

(
n−1+2(κ1+κ2), (α log n)

2(β0−1)
β n−1+2(κ1+γ0α)

)∫ Mn

mn

∣∣∣∣N(s)

D(s)

∣∣∣∣2 ds
. max

(
n−1+2(κ1+κ2), (α log n)

2(β0−1)
β n−1+2(κ1+γ0α)

)
,

II1,3 . max

(
n−1+2κ2 , (α log n)

2(β0−1)
β n−1+2γ0α

)∫ Mn

mn

1

s2
ds

. max

(
n−1+3κ2 , (α log n)

2(β0−1)
β n−1+κ2+2γ0α

)
and

II2 = O((α log n)
− 1

β ), II3 = O(n−κ2).

It is easily seen that under condition (M.3) with 1−3κ2 > 0, the rate (α log n)
− 1

β denom-
inates the other rates. Hence,

E∥ψ̂ − ψ∥2.(α log n)
− 1

β .

2

Remark 3. It follows from Theorem 1 that the convergence rate depends heavily on the
decay rate of the characteristic function ϕZ . In particular, we obtain convergence rate of
polynomial order when ϕZ ∈ Σ1(d0, d1) or ϕZ ∈ Σ2(d0, d1, β). However, if |ϕZ(s)| decays
at an exponential rate as |s| → ∞, only logarithmic convergence rate can be obtained.
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When estimating the Lévy density, the polynomial decay rate of ϕZ leads to polynomial
convergence rate of the estimator, and the exponential decay rate of ϕZ usually leads to
logarithmic convergence rate. See Neumann and Reiß(2009), Kappus and Reiß(2010)
and Kappus (2014). Hence, we obtain the same conclusion when estimating the ruin
probability in the Lévy risk model.

4. Simulation studies

In this section we provide some simulation results to illustrate the behavior of our
estimator when the sample size is finite. We use fast Fourier (inversion) transform to
compute the estimator.

By (2.12), we have ψ̂(u) = Rζ(u), where

ζ(u) =
1

2π

∫ Mn

mn

e−ius N̂(s)

D̂(s)
ds+

1

2π

∫ −mn

−Mn

e−ius N̂(s)

D̂(s)
ds

:= ζ1(u) + ζ2(u).

For a small constant a > 0, we can approximate ζ1(u) as follows,

ζ1(u) ≈
K∑
j=1

e−iua(j−1) aN̂((j − 1)a)

2πD̂((j − 1)a)
1(mn≤(j−1)a≤Mn),

where K is taken to be some power of 2. In particular, for

uk =
2π

aK
(k − 1), k = 1, 2, . . . ,K,

we have

ζ1(uk) ≈
K∑
j=1

exp

(
−2πi

K
(j − 1)(k − 1)

)
aN̂((j − 1)a)

2πD̂((j − 1)a)
1(mn≤(j−1)a≤Mn).

Then we can use fast Fourier transform to compute ζ1. As for ζ2, we have

ζ2(u) ≈
1

K

K∑
j=1

eiua(j−1)aKN̂((1− j)a)

2πD̂((1− j)a)
1(mn≤(j−1)a≤Mn).

In particular, for uk, k = 1, 2, . . . ,K, we have

ζ2(uk) ≈
1

K

K∑
j=1

exp

(
2πi

K
(j − 1)(k − 1)

)
aKN̂((1− j)a)

2πD̂((1− j)a)
1(mn≤(j−1)a≤Mn),
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which implies that we can apply fast Fourier inversion transform to compute ζ2.
We assume that the characteristic exponent is given by

Ψ(s) = ics− σ2

2
s2 +

∫ ∞

0
(e−isx − 1)λµe−µxdx, (4.1)

where c, λ, µ > 0 and c > λ/µ. When σ = 0, X is a classical risk model with exponential
jumps, and the ruin probability is given by

ψ(u) =
λ

cµ
e−(µ−λ

c
)u, u ≥ 0. (4.2)

When σ > 0, X is a compound Poisson model perturbed by diffusion, and the ruin
probability is given by

ψ(u) =
R1 + µ+ 2λ

µσ2

R1 −R2
eR1u +

R2 + µ+ 2λ
µσ2

R2 −R1
eR2u, u ≥ 0, (4.3)

where R2 < R1 < 0 are negative roots of the following equation (in s)

1

2
σ2s+ c− λ

s+ µ
= 0.

In the following simulation, we set c = 1.2, λ = 1, µ = 1, ∆ = 1, a = 0.001
and K = 216. When X is a compound Poisson model, we have ϕZ ∈ Σ1(d0, d1) with
d1 = 1 and d0 = e−2λ = e−2. See Example 1 in Section 3. We choose rn = 0.01× n−1/3,
mn = 0.01×n−1/3 by hand. WhenX is a compound Poisson model perturbed by diffusion,
we set σ2 = 1. It follows from Example 4 in Section 3 that ϕZ ∈ Σ3(d0, d1, β0, β1, β, γ0, γ1)
with d0 = e−2, d1 = 1, β0 = β1 = 0, γ0 = γ1 = 1

2 , β = 2. In this case, we choose

rn = 0.01× n−1/5, mn = 0.01× n−1/5 and Mn = 100× (0.2 log n)1/2 by hand.
In Figure 1 (a), we plot the true ruin probability curve and 20 estimated curves

with sample size n = 1000. We find that the estimates have larger volatility when the
curvature is large ( for u ∈ [5, 20]). This implies that ruin probability is hard to estimate
when the curve is complex. In Figure 1 (b), we plot the true ruin probability curve
and some mean curves with sample sizes n = 200, 500, 1000, 3000, which are computed
based on 500 simulation experiments. As is expected, the results improve as the sample
size improves. Likewise, we illustrate some simulation results in Figure 2 when X is a
compound Poisson model perturbed by diffusion. We can obtain the same conclusions as
in the compound Poisson model. Furthermore, comparing Figure 1 with Figure 2, we find
that the ruin probability is harder to estimate when the diffusion volatility exists. This
is in agreement with the results in Theorem 1. Finally, we compute the mean squared
errors and present some results in Table 1 and Table 2. The results are computed based
on the above 500 experiments. We find that the mean squared errors decrease w.r.t. the
sample size. Again, comparing the values of the same cells across these tables, we observe
that the ruin probability is harder to estimate when diffusion volatility exists.
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Figure 1: Estimation of the ruin probability in the compound Poisson model. (a) True curve (bold red
line) and 20 estimated curves (dotted blue lines) with sample size n = 1000; (b) True curve and mean
curves with sample sizes n = 200, 500, 1000, 3000.

Table 1: Mean squared errors for the estimates when X is a compound Poisson model.

u10 u20 u30 u40 u50 u60 u70 u80 u90 u100
n = 200 0.0333 0.0379 0.0419 0.0448 0.0465 0.0472 0.0473 0.0468 0.0460 0.0450
n = 500 0.0073 0.0118 0.0154 0.0179 0.0193 0.0199 0.0199 0.0195 0.0187 0.0178
n = 1000 0.0034 0.0056 0.0073 0.0084 0.0089 0.0091 0.0089 0.0084 0.0079 0.0072
n = 3000 0.0012 0.0020 0.0027 0.0031 0.0033 0.0033 0.0032 0.0031 0.0028 0.0026

Appendix A. Useful inequalities

We present two useful inequalities that are frequently used in this paper.
Bernstein’s inequality. Let Y1, . . . , Yn be independent random variables with zero means
and bounded ranges: |Yj | ≤M (j = 1, . . . , n). If

∑n
j=1Var(Yj) ≤ V , then for each η > 0

P

∣∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣∣ ≥ η

 ≤ 2 exp

(
−

1
2η

2

V + 1
3Mη

)
.

Table 2: Mean squared errors for the estimates when X is a perturbed compound Poisson model.

u10 u20 u30 u40 u50 u60 u70 u80 u90 u100
n = 200 0.0508 0.0498 0.0507 0.0522 0.0532 0.0540 0.0546 0.0545 0.0543 0.0539
n = 500 0.0137 0.0162 0.0197 0.0226 0.0248 0.0270 0.0285 0.0294 0.0302 0.0303
n = 1000 0.0027 0.0047 0.0068 0.0088 0.0104 0.0116 0.0124 0.0129 0.0131 0.0131
n = 3000 0.0012 0.0020 0.0028 0.0036 0.0042 0.0046 0.0049 0.0050 0.0050 0.0050
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Figure 2: Estimation of the ruin probability in the compound Poisson model perturbed by diffusion. (a)
True curve (bold red line) and 20 estimated curves (dotted blue lines) (b) True curve and mean curves
with sample sizes n = 200, 500, 1000, 3000.

The Rosenthal inequality. Let Y1, . . . , Yn be independent random variables with zero
means, such that E|Yj |p < ∞ (j = 1, . . . , n) for an integer p ≥ 1. Then there exists a
constant C depending only on p such that

E

∣∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣∣
p

≤ C ·

 n∑
j=1

E|Yj |p +

 n∑
j=1

EY 2
j

p/2
 .

Acknowledgements
The authors would like to thank the anonymous referees for their helpful comments

and suggestions, which improved an earlier version of the paper. Zhimin Zhang is sup-
ported by the National Natural Science Foundation of China (11101451) and the Natural
Science Foundation Project of CQ CSTC of China (cstc2014jcyjA00007). Hailiang Yang
acknowledges the support from the Research Grants Council of the Hong Kong Special
Administrative Region (project No. HKU 705313P) and Society of Actuaries’ Centers of
Actuarial Excellence Research Grant.

References

[1] Asmussen, S., Albrecher, H., 2010. Ruin Probabilities, Second Edition. World Scien-
tific, Singapore.

[2] Croux, K., Vervaerbeke, N., 1990. Nonparametric estimators for the probability of
ruin. Insurance: Mathematics and Economics 9(2-3): 127-130.

24



[3] Chung, K.L., 2001. A Course in Probability, Third Edition. Academic Press, San
Diego.

[4] Comte, F., Genon-Catalot, V., 2009. Nonparametric estimation for pure jump Lvy
processes based on high frequency data. Stochastic Processes and their Applications
119(12), 4088-4123.

[5] Comte, F., Genon-Catalot, V., 2010. Nonparametric adaptive estimation for pure
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